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Abstract— To navigate safely and efficiently within crowds,
robots need models for crowd motion prediction. Building such
models is hard due to the high dimensionality of multiagent
domains and the challenge of collecting or simulating interaction-
rich crowd-robot demonstrations. While there has been impor-
tant progress on models for offline pedestrian motion forecasting,
transferring their performance on real robots is nontrivial due
to close interaction settings and novelty effects on users. In
this paper, we investigate the utility of a recent state-of-the-art
motion prediction model (S-GAN) for crowd navigation tasks.
We incorporate this model into a model predictive controller
(MPC) and deploy it on a self-balancing robot which we subject
to a diverse range of crowd behaviors in the lab. We demonstrate
that while S-GAN motion prediction accuracy transfers to the
real world, its value is not reflected on navigation performance,
measured with respect to safety and efficiency; in fact, the MPC
performs indistinguishably even when using a simple constant-
velocity prediction model, suggesting that substantial model
improvements and user-centered optimization criteria might be
needed to yield significant gains for crowd navigation tasks.

I. INTRODUCTION

Large-scale deep learning methods [2, 5, 8, 20, 24, 25, 34]
have dramatically improved the state-of-the-art in prediction
accuracy across standard benchmarks [14, 21]. While these
models have been the foundation of recent real-world robot
demonstrations [1, 3, 4, 6, 10, 15], scaling their performance
to complex environments like pedestrian domains, warehouses,
or hospitals is challenging as these environments feature close
interaction settings, large space of behavior, and limited rules.

To address these challenges, many approaches learn end-to-
end deep learning models from simulated crowd-robot inter-
actions [3, 4, 6, 15]. While typical crowd simulators [9, 30]
produce realistic behaviors, some of their core assumptions
limit their relevance to crowd-navigation tasks. For instance,
Fraichard and Levesy [7] showed that the assumptions of
omniscience and homogeneity of existing crowd simulators
give rise to behaviors that would be unsafe to execute on
a real robot. Further, Mavrogiannis et al. [19] showed that
a non-reactive, non-collision-avoiding agent is safer than
ORCA-simulated agents in an ORCA-simulated world [30]
due to the overly submissive behaviors this model may exhibit.
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Fig. 1: Honda’s experimental ballbot [11] navigates next to
three users in our lab. Agents’ past trajectories and distribution
of future actions are shown. In this paper, we approach the
question of how human motion prediction accuracy translates
into robot navigation performance in crowded environments.

Other approaches learn models of human motion prediction
from pedestrian datasets and incorporate them into navigation
controllers [1, 4, 12, 13, 18, 26, 28, 29, 32, 35]. However,
the pedestrian datasets commonly used [14, 21] feature
well-structured, goal-directed, and cooperative motion. These
settings represent a narrow subset of the behavior that a
robot would encounter in the real world. This behavior is so
prevalent in those datasets that according to Schéller et al.
[27], even constant-velocity (CV) prediction, a very simple,
analytical model, performs comparably to recent state-of-
the-art (SOTA) deep models. Therefore, while the SOTA in
human motion prediction keeps improving, it is unclear what
its relevance is for robot navigation in crowds.

Inspired by these observations, we ask the question:

To what extent does crowd motion prediction
accuracy translate to robot navigation performance
in crowd navigation tasks?

To approach this question, we investigate the transfer of a
SOTA model (S-GAN [8]) from offline to onboard perfor-
mance and its implications for crowd navigation. We integrate
the S-GAN into a MPC and deploy it on a self-balancing robot
(see Fig. 1), which we subject to diverse crowd conditions in
the lab. Through extensive experiments, we find that while
the onboard prediction accuracy of S-GAN is superior to a
simple CV baseline, the MPC navigation performance (safety
and efficiency) is indistinguishable, suggesting that substantial
prediction improvements and new validated optimization
criteria may be needed to improve navigation performance.
Our evaluation includes novel benchmarking experiments
involving a variety of crowd conditions that may serve as
evaluation settings for future crowd navigation experiments.
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II. PROBLEM STATEMENT

We consider a workspace YW C R? where a robot navigates
among n human agents. We denote by s € W the robot state
and by s* € W the agent state i € A" = {1,...n}. The robot
is navigating from a state so towards a goal state g whereas
agent i € N = {1,...n} is navigating from s} towards a
destination g°. The robot is unaware of g* but we assume
that it is fully observing the world state (s, s5") at every
timestep ¢. Maintaining a history of states for all agents, the
robot predicts their future trajectories using a model f. In
this paper, our goal is to investigate whether the prediction
accuracy of f translates to robot navigation performance.
As a proxy for navigation performance, we consider metrics
capturing safety and efficiency of robot motion.

III. HUMAN MOTION PREDICTION

We treat human motion prediction as trajectory prediction
over a horizon T' given a past trajectory of horizon h.

A. Probabilistic Trajectory Prediction

We denote by si_, , € W the partial trajectory of an
agent i € N of horizon h and by s, . € W' the future
trajectory until time 7'. Consider a joint state prediction model
f w5 ywWnxT which takes as input the joint states of
the agents s}, . and predicts the future states 3.

f (Sifh:tv ce ngh:t) = (§%zt+T7 s é?:t+T) =ain

We denote the distribution of future states for an agent
i € N as p(8},, 1), and the joint distribution of states is
represented as p(3"™). The prediction model f : W*™ x
WT*n — [0,1] is a conditional distribution; denoting the
distribution of the future trajectories given past trajectories of
all the agents i.e f corresponds to p(§'™|s}" ). In this paper,
we adopt a probabilistic trajectory prediction mechanism
f using Social GAN (S-GAN), a state-of-the-art model
from Gupta et al. [8]. The generative S-GAN model is able to
output samples for the future states ;7 - ~ p(sif' r|s5f).

B. Offline Prediction Performance

Scholler et al. [27] compared the Average Displacement
Error (ADE) and Final Displacement Error (FDE) of S-GAN-
based prediction against CV prediction and CV prediction
with added noise (CVN), showing that the latter ones perform
comparably across the scenes in the ETH [21] and UCY [14]
datasets. In Fig. 2, we compare their multistep prediction
performance (i.e., the L2-norm between the predicted position
and ground truth at each timestep of prediction), which is
informative for navigation tasks. We note that the mixed per-
formance of S-GAN (lower on Zaral, similar or outperformed
on others) can be attributed to the datasets mostly consisting
of linear segments well approximated by CV/CVN.

IV. MPC WITH PROBABILISTIC MULTIAGENT
TRAJECTORY PREDICTION

We integrate prediction models from Sec. III into an MPC
for crowd navigation.

A. MPC for Navigation in Crowds

We employ a discrete MPC formulation for navigation in
a multiagent environment:

* . ~ ~lin
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where: s = (s1,...,87) is a state rollout from passing a
control trajectory u = (uo,...,ur_1) drawn from a space
of controls U through the dynamics g; §' = (8},...,8%) isa
trajectory prediction for agent 7, extracted using f, using past
trajectory of horizon h and ' = (8',...,5") as input; J
is a cost expressing considerations of safety and efficiency
where '™ is an input, so the evaluation of w and thus, the
controller performance relies on the quality of f.

B. MPC with Probabilistic Prediction

We integrate the models from Sec. III into a composite loss
function where the expectation is taken over the uncertainty
over the future human behavior represented by the distribution
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Prediction inconsistency cost. Minimizing the cost:
Jc(s,8) =E[lls — ][], 3)

matches in expectation the model prediction for the robot §,
given its past crowd interactions. Aligning with the predictions
allows for more confident human predictions and discourages
behavior leading to unexpected navigation scenarios.

C. Simulated Experiments

To evaluate the impact of prediction accuracy on navigation
performance, we deployed Honda’s experimental ballbot [11,
18, 33] (see Fig. 1) in a simulated Gazebo world with three
ORCA [30] agents, where they move across the diagonals of
a workspace (see Table I, top left). We evaluated navigation
performance in terms of Safety - minimum distance between
the robot and agents throughout a trial, and Time to goal -
time taken by the robot to reach its goal.

Implementation. We instantiated four different MPC vari-
ants, each using a different mechanism for motion prediction:
MPC with CV prediction, MPC with CVN prediction, MPC
with S-GAN-1 prediction and MPC with S-GAN-20 prediction.
We follow an implementation similar to Brito et al. [1],
extracting a set I/ of robot control trajectories by propagating
the robot with constant velocity towards subgoals.

Results. Fig. 3a depicts multistep displacement errors
across models. We see that S-GAN models’ error is con-
sistently higher than CV/CVN. We suspect that this is
because ORCA behavior (majorly linear segments) can be
approximated using CV-based models. However, we see
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Fig. 2: Error in trajectory prediction of humans on the ETH [21] and UCY [14] datasets. Baselines are referred to from [27].
Error bars indicate 95% confidence intervals, and the line represents the minimum displacement error across the samples.
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Fig. 3: Simulation results. (a) Human motion prediction
error over time. (b) Safety vs Time to goal. Lines represent
minimum displacement errors across the samples and error
bands indicate 95% confidence intervals.

this CV/CVN prediction superiority does not translate to
navigation: a scatter plot for safety vs. time to goal (Fig. 3b)
does not show a clear winner.

V. REAL-WORLD EXPERIMENTS

As discussed in Sec. I, benchmarking in simulation has
limitations. So, we investigate the relationship between
prediction and navigation under realistic settings in the lab.

A. Experimental Setup

We used Honda’s experimental ballbot [11, 18, 33]
(see Fig. 1), in a workspace mirroring out simulation setup.

Conditions. We designed three experimental conditions
(shown on the left column of Table I) involving robot
navigation under different crowd behaviors that a robot could
encounter in a crowded space: Cooperative, Aggressive and
Distracted. Across all conditions, the robot moves between
fixed start and goal points (20 trials per algorithm for the
cooperative and 10 trials for the rest).

Algorithms. Across conditions, we compared the perfor-
mance of the same MPC architecture under three different
motion prediction models: CV, S-GAN-1, and S-GAN-20.

Hypotheses. While S-GAN models performed worse than
CV in simulation, their prediction accuracy on real-world
datasets [8] (Fig. 2) appeared promising for real-world
operation. Thus, we expected S-GAN models to outperform
baselines and enable improved navigation performance. We
formalized these expectations into the following hypotheses:

H1: S-GAN-based prediction is more accurate than CV
prediction across all conditions.
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Fig. 4: Relationship between prediction performance and
navigation performance per trial in the real world.

H2: S-GAN-based prediction enables the MPC to achieve
higher navigation performance across all conditions.

H3: Lower prediction error generally enables the MPC to
achieve higher navigation performance.

Average Displacement Error (m)

(b) Time to goal

B. Results

Table I shows the multistep prediction error and the navi-
gation performance distribution per condition. Fig. 4 relates
average prediction error per trial to navigation performance.

H1. We see that S-GAN-20 outperforms CV and S-GAN-
1 exhibiting consistently lower multistep prediction error
(Table I, 2nd column) across all conditions. H1 holds for a
strong model like S-GAN-20.

H2. From the right column of Table I, we see that for the
cooperative condition, S-GAN-20 has generally is mostly on
the left (good time efficiency) and usually higher than the
0.5m Safety, whereas others are dispersed all over the graph.
In the aggressive condition, no major differences in terms of
efficiency, but S-GAN-20 is often but not consistently safer
than baselines. In the distracted condition, algorithms are close
to each other. We find no support that the clear superiority
in SGAN-20 predictions (H1) translates to superiority in
navigation, and therefore H2 is rejected.

H3. Fig. 4 shows that across conditions, we see a pattern
connecting lower errors to higher safety and efficiency.
However, this is not definitive: points are scattered across
large regions for both metrics. Further, as shown in Table I,
prediction rankings do not transfer clearly to navigation
rankings. Thus, we find no support that lower prediction
error leads to improved navigation and H3 is rejected.



TABLE I: Real-world experiments. Each row shows a different experimental condition: an illustration of the crowd behavior
under each condition is shown on the left (users and their goals are shown in blue, whereas the robot and its goal are shown
in black color); the multistep prediction error across trials is shown in the middle (error bands indicate 95% confidence
intervals); a scatter plot of Safety against Time to goal is shown on the right.
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VI. DISCUSSION

Model Transfer. The high-quality predictions of S-GAN
transferred from offline datasets to predictions onboard the
robot which shows the efficacy of this generative machinery
in modeling multiagent interactions. However, S-GANs
struggled with out-of-distribution behaviors encountered in
the ORCA-simulated trials (Sec. IV-C). This observation
highlights the sensitivity of the model to the modes of
interaction found in the training dataset. Inducing structure
through interaction representations [16, 23, 28] might improve
transfer across a wider range of behavior.

Robot and crowd motion are entangled. Across models,
prediction performance did not clearly map to navigation
performance (H3). During navigation, robot motion is coupled
with crowd motion. We accounted for that with a joint
prediction model, capturing close unfolding crowd-robot
interactions. However, when the MPC forces the robot to
deviate from the model’s ego-prediction, the resulting action

likely violates the validity of the crowd motion prediction.
While the prediction inconsistency cost (see Sec. IV-B)
motivated closeness to ego predictions, the other costs may
lead to states outside the model’s confidence. An exciting
direction for future work is incorporating formalisms of
prediction model confidence into decision making.

Beyond the Safety-Efficiency tradeoff. After the lab
experiments, users shared that MPC with S-GAN was
predictable, safer, and more comfortable, but these values
are not reflected in the evaluation metrics. While Safety
and Efficiency are extensively used for evaluation in social
navigation [19], they miss important attributes of interaction
such as human comfort, satisfaction, and smoothness. Recent
work has looked at the connection between robot navigation
and human impressions [17, 31] but more work is needed on
the design of validated interaction metrics, integrating crucial
modalities like human gaze, body posture, and gestures.
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